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Abstract 
Approximate methods are described for treating dyna- 
mical scattering effects in integrated electron diffraction 
intensities from unknown structures. In the application to 
AlmFe, (hk0) structure factors have been determined by 
combining data from two electron diffraction techniques: 
energy-filtered convergent-beam electron diffraction 
(CBED) profiles from the (h00) and (hhO) systematic 
rows and integrated intensity collected by the precession 
technique in the [001] projection. The ab initio 
determination of the (h00) and (hhO) structure factors 
was based on accurate intensity measurements and 
n-beam dynamical scattering calculations for the sys- 
tematic row. The remaining (hk0) structure factors were 
determined from integrated intensities by means of two- 
beam-like intensity expressions and the effect of other 
beams was accounted for by a dynamical potential. 

1. Introduction 
Crystal structure determination from electron diffraction 
intensities is a rapidly growing field. Efforts towards 
development of standard procedures has progressed 
along two lines: a kinematic approach with adaption 
and modification of techniques from X-ray crystal- 
lography (Dorset 1994; Dorset, Kopp, Fryer & Tivol, 
1995; Bricogne & Gilmore, 1990), sometimes combined 
with information from high-resolution images (Zou, 
Sundberg, Larine & Hovm611er, 1996; Weirich, Ramlau, 
Simon, Hovm611er & Zou, 1996), or a multiple-scattering 
approach where the dynamical theory is incorporated in 
crystallographic methods specifically designed for elec- 
tron diffraction (Spence, 1993). 

The effect of dynamical scattering, appreciable at large 
thicknesses, on electron diffraction intensities is strongly 
dependent on diffraction conditions. This has led to two 
radically different approaches to crystal structure deter- 
mination by electron diffraction. One is based on energy- 
filtered convergent-beam electron difffraction (CBED) 
profiles taken in orientations with enhanced dynamical 
scattering, giving a high sensitivity to structure details, 
suitable for the determination of a few very accurate 
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structure factors. The alternative, which is more suited to 
the determination of unknown structures, is to extract 
integrated intensities from off-axis orientations, where 
dynamical scattering is reduced, and approximations in 
terms of two or a few beams can be applied. In this paper, 
we show how these two approaches have been combined 
in the study of the unknown structure AlmFe. 

In the first approach, the sensitivity of electron 
difffractionis fully exploited by seeking orientations 
where dynamical effects are maximized. Energy-filtered 
one- or two-dimensional CBED profiles are measured 
and subsequently fitted to theoretical curves for determi- 
nation of accurate structure-factor amplitudes or phases, 
usually in small unit cells (Bird & Saunders, 1992; Zuo, 
Spence & O'Keeffe, 1988; Gjonnes, Gjonnes, Zuo & 
Spence, 1988). Very accurate structure parameters can be 
obtained but this requires extensive calculations, even in 
the case of refinement of a few structure factors in 
otherwise known structures (Saunders et al., 1995; 
Saunders, Bird, Midgley & Vincent, 1994). Application 
to unknown structures, on the other hand, would require 
approximations in terms of few beams, at least in the 
initial stages of refinement. In an ab initio determination 
of (h00) and (hhO) structure factors in AlmFe (Cheng, 
Niichter, Mayer, Weickenmeier & Gjonnes, 1996; and 
this paper) from energy-filtered systematic row CBED 
intensity profiles, structure factors were determined 
iteratively, starting from a two-beam description of the 
strongest reflection in the systematic row, and gradually 
including more reflections in the calculations. The 
method can, in principle, be extended to two rows or 
three- and four-beam cases coupled by reflections already 
determined and finally to projections. This would, 
however, comprise a formidable task. 

The use of integrated intensities in structure determi- 
nation represents a different approach, more suited to the 
determination of unknown structures. Integrated inten- 
sities extracted from CBED patterns by integration across 
K-line segments in systematic rows (Tatto & Metzger, 
1985), in higher-order Laue-zone (HOLZ) tings (Vin- 
cent, Bird & Steeds, 1984; Vincent & Bird, 1986) or in 
off-axis orientations are less sensitive to thickness and 
less affected by non-systematic many-beam dynamical 
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scattering. By integration over diffraction conditions, 
contributions from many-beam interactions are averaged 
and dynamical effects are thus even further reduced. The 
sensitivity of the diffraction data to the crystal structure 
details may be reduced in such experiments but the 
sensitivity to thickness and other experimental param- 
eters is also reduced. Integrated intensities can be 
extracted from systematic rows and off-axis orientations 
but a more practical way to collect a full three- 
dimensional set of intensities is provided by the Vincent 
& Midgley (1994) technique, where the tilted beam is 
precessed about the zone axis. Below the objective lens, 
the beam is descanned to produce a diffraction pattern, 
where each spot corresponds to the integrated intensity of 
one reflection. Thus, all the reflections in a projection can 
be measured in a single exposure and a three-dimensional 
set of intensities can be constructed by merging intensity 
data from several projections. 

In this paper, we show how the two approaches 
described above can be combined in the study of an 
unknown structure, our example being the intermetallic 
phase AlmFe with m _~ 4.4 [with space group 1242m and a 
tetragonal unit cell of a = 8.84, c -- 21.6 A (Gj~nnes, 
Hansen, Berg, Midgley & Cheng, 1995)]. Structure 
factors in the two systematic rows (h00) and (hhO) have 
been determined from energy-filtered CBED intensity 
profiles in off-axis orientations where non-systematic 
effects are reduced, extending the results previously 
reported for the (h00) rows (Cheng, Niichter, Mayer, 
Weickenmeier & Gjonnes, 1996). The remaining struc- 
ture factors in the [001] projection have been determined 
from integrated intensities obtained by the Vincent- 
Midgley technique using a two-beam approach, where 
the effect of other beams is included through an effective 
potential. The complete three-dimensional intensities 
obtained by the precession technique are currently being 
used in a structure determination of AlmFe based on a 
kinematic interpretation of the intensities (Gj~nnes et al., 
1998) by employing a number of crystallographic 
methods adapted from X-ray diffraction. Treating 
intensities as kinematic obviously simplifies the structure 
determination but at the risk of losing information 
distorted by strong dynamical diffraction effects. The 
purpose of the present paper is to demonstrate that 
structure factors in a projection can be determined from a 
combination of energy-filtered CBED profiles in sys- 
tematic rows and integrated intensities at a much poorer 
accuracy and to show that this procedure does indeed 
bring out new structure information compared with a 
purely kinematic interpretation of the intensities. 

2. Determination of (hhO) structure factors from 
energy-filtered CBED profiles 

The first step towards the goal defined in the Introduction 
is to determine the structure factors in the unknown 
structure AlmFe from systematic row CBED pattems. The 

Table 1. Structure factors and Bethe potentials in the 
(hO0) systematic row 

Bethe potential 

Structure factor Sytematic Non-systematic 
hkl Ug in A -2 only (h00) (h00) and (hhO) 

200 -0.01191 (31) -0.01461 -0.01456 
400 0.01592 (44) 0.01079 0.01066 
600 0.01275 (16) 0.01742 0.01729 
800 -0.00653 (72) -0.00624 -0.00616 
10,0,0 0.00359 (33) 0.00152 -0.00147 
12,0,0 -0.00135 (18) -0.00072 -0.0071 
14,0,0 -0.00214 (31) -0.00220 -0.00225 

Table 2. Structure factors and Bethe potentials in the 
(hhO) systematic row 

Bethe potential 

Structure factor Sytematic Non-systematic 
hkl U x in A -2 only (hhO) (h00) and (hhO) 

110 0.0029 (45) 0.00387 0.00517 
220 -0.00199 (23) 0.00214 0.00308 
330 0.0387 (9) 0.03976 0.03980 
440 0.00750 (34) 0.00523 0.00399 
550 0.00773 (107) 0.00910 0.00891 
660 0.00226 (51) -0.00407 -0.00428 
770 0.00158 (27) 0.00001 0.00000 
880 0.00514 (40) 0.00368 0.00400 
990 0.00300 (18) 0.00228 0.00219 
10,10,0 0.00140 (11) 0.00104 0.00076 
11,11,0 0.00210 (8) 0.00137 0.00455 

extension of this method to unknown structures was 
published by Cheng, Niichter, Mayer, Weickenmeier & 
Gjonnes (1996) for the (h00) row in AI,,,Fe. Those results 
are reproduced here, but for a more detailed description 
of the refinement procedure see Cheng et al. (1996). The 
present treatment has been extended to include the (hhO) 
row. 

Energy-filtered CBED patterns from the (h00) and 
(hhO) systematic rows were taken at 120 kV using a Zeiss 
EM912 equipped with an omega filter. CBED patterns 
acquired with a slow-scan CCD camera were deconvo- 
luted with the point-spread function of the CCD camera 
and introduced into the structure-factor-determination 
scheme. The CBED pattems were taken near the Bragg 
condition for reflections in the two systematic rows (h00) 
and (hhO). Interferences from non-systematic reflections 
were minimized by careful tilting into orientations where 
few non-systematic reflections were excited. Several 
diffraction patterns, at different thicknesses and orienta- 
tions, were recorded for each of the two rows. The 
structure factors listed in Tables 1 and 2 are the averages 
of structure-factor determinations based on all of these. 

The refinement procedure utilized programs originally 
developed by ZUo & Spence (1991) and modified by 
Nfichter, Weickenmeier & Mayer (1995). Only systema- 
tic reflections were included and absorption was ignored. 
Structure factors as well as thickness, diffraction 
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condition and orientation of the reciprocal vector relative 
to the camera were refined. An iterative approach was 
used for the structure-factor refinement. The structure- 
factor amplitude and thickness were determined for the 
strongest reflection in the systematic row, i.e. 600 in the 
(h00) row and 330 in the (hhO) row, using a two-beam 
approximation. Then low-order structure factors were 
refined using four beams: 200, 400 and 600 in the (h00) 
row and 110, 220 and 330 in the (hhO) row. Signs were 
determined by using a range for the structure factors 
including both negative and positive values. The 
refinement of the structure factors for the strongest 
reflections, 600 and 330, was then improved using four 
beams in the calculations. Higher-order reflections were 
gradually introduced into the calculations and refined 
while keeping the low-order structure factors constant. 
After approximations had been derived for all the 
structure factors, the refinement of the low-order 

reflections was repeated using all 15 and 23 beams for 
the (h00) and (hhO) rows, respectively. See Fig. 1 for a 
comparison between calulated and experimental intensity 
profiles in the (hhO) row. At intermediate stages in the 
refinement described above, multiple solutions with 
comparable X 2 could be found but we were able to 
distinguish between these in the further refinement. The 
resulting structure factors are listed in Tables 1 and 2. 

The signs within the (h00) and (hhO) rows in Tables 1 
and 2 are relative signs referring to an isolated row. The 
symmetry in the [001] projection is 4mm (Gjonnes et al., 
1995), where (hk0) and (h/d)) have the same sign. The 
signs of 4n,0,0 and 2n,2n,0 reflections are invariant under 
a change of origin. When the sign has been chosen for 
one of the remaining (h00) and (hhO) reflections, the 
origin is defined. The rest of the signs will then be 
determined by the choice of the origin. A further 
discussion of the signs is defered to §3.4. 

8 0 0 0  I I 

6 0 0 0  ° 

J m  

W 
= 4000 

0 

"° 

2O1111 
o 

o 

0 , ____.9 

== 10 T 

"g 0 

"o - 1 0  L 

0 100 200 300 
pixel number  

Fig. 1. Refinement of  (hhO) structure factors from systematic row CBED intensity profiles. 
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3. Determination of structure factors in the [0011 
projection from integrated intensities 

In the previous section, we have described the determina- 
tion of (h00) and (hhO) structure factors from CBED 
intensity profiles. In this section, we present procedures 
aimed at extracting corrected near-kinematic intensities 
from experimental integrated intensities obtained with 
the Vincent-Midgley precession technique. The applica- 
tion to the [001] projection of AlmFe is discussed in detail 
in the following and only a brief outline is given here. 

An approximate description of the dynamical scatter- 
ing in terms of a perturbed two-beam case forms the basis 
for the procedure for extraction of structure factors from 
the precession data. The effects of other beams are 
included through an effective (dynamical) potential given 
by Bethe (1928): 

U~ e'hc = Ug - ~_, (U h Ug_h) /21c%, 
h#g 

which can be substituted for the structure factor in 
expressions for the integrated intensity as a function of 
thickness. This is justified, since the precession technique 
uses off-axis orientations where relatively few beams are 
simultaneously excited and these are only weakly 
coupled. 

Several steps are needed to obtain structure factors 
from the precession data, some of these make extensive 
use of the subset of structure factors determined earlier 
(see §2). The first step is to correct the experimental 
precession intensities by correcting for the geometrical 
factors introduced by the precession technique and obtain 
f lg dsg for comparison with the kinematic expression or 
approximations in terms of two beams. The relative 
integrated intensities, and possibly also the dynamical 
potentials, depend on the crystal thickness and the first 
step is therefore to determine the thickness for the 
precession data. The relative intensities in the two 
systematic rows (h00) and (hhO), where the structure 
factors were known fi'om CBED measurements, were 
used for determination of the thickness for the precession 
data. Corrections for two-beam dynamical effects could 
then be calculated at this thickness using the two-beam 
expression for the integrated intensity (Blackman, 1939): 

oc Ag 

f Ig(Sg) dsg ~ Ag f Jo(x) dx 
- o c  0 

with  Ag - -  2zrUgz/k, the result being effective potentials 
in the [001] projection. The final step in the procedure is 
to calculate the structure factors (including signs) from 
the effective potential amplitudes using the Bethe 
equations. Signs are therefore needed for the effective 
potentials, which were determined using symbolic 
addition methods utilizing the relative signs within the 
(h00) and (hhO) rows and positive triplets including the 
(hk0) reflections. When the signs had been determined, 

the structure factors could be calculated by an iterative 
reversal of the Bethe equation for the dynamical 
potentials. Finally, as a check of the procedure, n-beam 
dynamical calculations of integrated intensities starting 
from the (h/d)) structure factors determined here were 
compared with the experimental intensities. 

3.1. Measurement of integrated intensities in the [001] 
projection 

Integrated (hk0) intensities were extracted from 
electron diffraction negatives taken with the precession 
technique (Vincent & Midgley, 1994) by integration of 
the intensity within each reflection (spot) (Berg, 1996; 
Berg, Hansen, Midgley & Gjonnes, 1997). The measured 
intensities (see Table 3) thus result from a double 
integration, first over the rotation angle in the plane, 0 in 
Fig. 2, during the precession of the beam and then over 

incident bea~ 

specimen 

diffracted beam----4rbeam,/~ 
(' direct 

Fig. 2. The precession geometry. 

-1 
,.,iffraction pattern 
¢ 
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kxy, the projection of  k onto the (hk0) plane during the 
recording of  the intensity from the negative. Intensities 
therefore needed to be corrected for the geometrical 
factors associated with the precession. Correction factors, hkt d 
similar to the Lorentz factors used in X-ray diffraction, 110 6.25 

have previously been derived by Gjonnes (1997a) and are 200 4.42 

reproduced here for the zero-order Laue zone. 220 3.13 

Let us first consider the integration over 0 when there 310 2.80 
is no beam divergence: 330 2.08 

400 2.21 
2zr 420 1.98 

igCXp (1 ) cx f Ig(O) dO 440 1.56 
0 510 1.73 

530 1.52 
with 0 the angle in Fig. 2 and Ig the intensity in reflection 550 1.25 
g. For comparison with two-beam or kinematical 6o0 1.47 

approximations, we need the integral over the excitation 620 1.40 
640 1.23 

error Sg, i.e. 660 1.04 

710 1.25 o~ 
730 1.16 

f Ig(sg)dsg. (2) 750 1.03 
-oo  770 0.89 

In the zero-order Laue zone, the integration over 0 in (1) 8oo 1.11 
82O 1.07 can be transformed to an integration over the excitation 
840 0.99 

error Sg by observing that (see Fig. 3) 86o o.88 
910 0.98 

2ksg -- - 2 k g g  - g2 = - 2 R g  c o s  0 - g2 (3) 930 0.93 

950 0.86 
970 0.78 
10,0,0 0.88 
10,2,0 0.87 
10,4,0 0.82 

and hence 

2k dsg = Rg sin 0 dO, (4) 

where R is the radius of  the Laue circle. The intensity in 
g, Ig(O), is significant only in a small region near the 
Bragg condition for g, allowing us to write s i n 0 -  
[1 - (g/2R)2] 1/2 outside the integral and 

2rt o~ 

f Ig(O)dO= 2{l/Rg[1 -(g/2R)2] 1/2} f Ig(sg)dsg, 
0 - o o  

(5) 

where the factor 2 takes care of  the fact that the Bragg 
condition is encountered twice in each precession cycle. 
The derivation can easily be extended to include higher- 
order Laue zones (Gjannes, 1997a). Equation (5) differs 

R 

o o~ 

aue c irc le  
g 

Fig. 3. The excitation error in the precession geometry. 

Table 3. Integrated intensities in the [001] projection 
Experimental 

integrated intensities Corrected intensities 
igeXp l~xP[1 -- (g/2R) 2] 

100.94 100.75 
312.56 311.39 
171.07 169.80 
170.15 168.57 
629.98 619.36 
289.78 285.45 

25.48 25.01 
70.94 68.81 
16.65 ! 6.24 

279.02 270.22 
313.13 298.52 
441.30 426.41 

9.09 8.75 
5.45 5.19 

174.74 162.96 
94.74 90.32 
36.02 34.07 

5.32 4.95 
11.41 10.36 

197.59 185.90 
160.04 149.85 

1.04 0.96 
123.34 111.73 

1.90 1.76 
41.70 38.19 

2.41 2.17 
1.18 1.04 

12.19 11.04 
13.67 12.35 
3.58 3.19 

(by a factor g) from the correction factor previously 
published by Vincent & Midgley (1994). When beam 
divergence is included (see below), the factor g in (5) will 
be cancelled by other terms. 

The width of  the reflections (spots) in the diffraction 
pattern results from the small spread of  directions within 
the incident electron beam limited by a small aperture. In 
a normal CBED pattern, this will produce circular discs 
of  the same size for all the reflections in the CBED 
pattern. In the precession technique, with a tilted beam, 
the effect on low- and high-index reflections will be 
different. The effect of  integration over the beam 
divergence, corresponding to an integration of  intensity 
within the spot on the electron diffraction negative, is to 
multiply the intensity in (5) with additional correction 
factors. The detailed derivation is published elsewhere 
(Gjonnes, 1997a) but the result for the zero-order Laue 
zone, 

g/{2R[1 - (g/2R)2]1/2}, (6) 

is valid to first order in r/R, with the Laue-circle radius in 
the zero-order Laue zone R -  r < REvue < R + r and 
r << R. Combining (5) and (6) gives 

oo  

f Ig(sg) dsg (3( [1 - (g/2R)2]I~ xp. (7) 
--(X) 
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Intensities corrected for the geometrical factors in the 
precession according to (7) are listed in column 2 of 
Table 3. 

3.2. Determination of thickness for the precession data 
jkom reflections in the (hO0) and (hhO) svstematic rows 

Dynamical scattering contributions to diffraction 
intensities, in this case the relative intensities extracted 
from the precession data, depend strongly on crystal 
thickness. As a first step towards correcting the 
intensities for dynamical scattering, we therefore need 
to determine the crystal thickness. The precession 
experiment itself gives no indication of the thickness, 
the integrated intensity, unlike a CBED profile, contains 
no features suitable for refinement of the thickness for an 
unknown structure. However, accurate structure factors 
for reflections in the (h00) and (hhO) systematic rows, 
including relative signs within each row, have been 
determined from energy-filtered CBED profiles (see §2). 
The relative intensities within these two rows can be 
calculated and compared with experimental intensities 
for determination of thickness. 

Assuming that the effect of many-beam dynamical 
effects can be described by effective potentials, derived in 
some way from the other beams in the projection, the 
intensity is given by a two-beam expression (Blackman, 
1939): 

Ag 
Ig xp o( {Uf / [1  - (g/ZR)2]} f J0(x) dx (8) 

0 

with the effective potential, U f ,  substituted for the 
structure factor, {Jr_, Jo(x) the Bessel function of zeroth 
order, Ag - 27cUJ(z/k and k = 1/~. The integral over J0 
in (8) is proportional to Ag for small values of Ag, i.e. for 
small thicknesses or weak reflections. At larger thick- 
nesses, the kinematic approximation no longer applies 
and the integrated intensity oscillates with thickness until 
the asymptotic value proportional to U f z  is reached at 
large thicknesses. 

Preliminary calculations were carried out to investigate 
the dynamical scattering effects in the (h00) and (hhO) 
systematic rows where structure factors were known and 
where the relative integrated intensities could be 
calculated using the Blackman formula. The Bethe 
(1928) potentials 

U Bethe = Ug- Y~.(UhUg_h)/2ksh, (9) 
beg 

with 2ks h the excitation error of reflection h at the Bragg 
condition for g, were calculated for each of the 
systematic rows as well as for the full set of (h00), 
(0h0), (hhO) and (h/70) reflections (see Tables I and 2). 
As expected, non-systematic contributions were found to 
be small in the (h00) row and somewhat larger in the 
(hhO) row, especially in II0 and 220. While the 
reflections in the (h00) row are all strong, reflections in 

the (hhO) row range from the very strong 330 to the very 
weak 220, giving much stronger dynamical interactions 
within the row, as well as possible non-systematic 
dynamical effects, e.g. in the weak 220 from the strong 
200 or involving 530 and 860 coupled by 330. The (h00) 
row was therefore considered more suited for determina- 
tion of the thickness. 

Integrated intensities calculated from the Blackman 
expression (9) were compared with experimental in- 
tensities in the (h00) row. A measure of the goodness of 
fit was defined in terms of relative integrated intensities: 

= Z F  -  10> 
gch L(zg/Ih) exp + [1.(z)/I~(z)]calJ ' 

where z is the thickness, (Ig/Ih) exp are the experimental 
relative intensities and Ig(z) and lh(z ) are integrated 
intensities calculated from (8). XZ(z) was calculated from 
(10) for the (h00) systematic row using structure factors 
determined from CBED profiles (see §2), as well as 
systematic row Bethe potentials calculated from the 
structure factors (Tables 1-2). In both cases, a minimum 
is observed, though more clearly for xZ(z) calculated 
from Bethe potentials (Fig. 4). The Bethe potentials 
represent the asymptotic value for the contributions from 
many-beam dynamical scattering at large thicknesses and 
tend to overestimate the dynamical effects at smaller 
thicknesses. Thickness-dependent dynamical potentials 
(Gjonnes, 1962) 

udynarnical(z)  = Ug- Z Tg.h(z)UhUg-h ( 1 1 )  

hCg 
Tg.h(z ) = (1/2ksh) { 1 -- (cos qg/zsh) 

x [1 -- exp(izsh/cos~o)] }, (12) 

with ~0 the precession angle, were therefore calculated 
and introduced in (8) and subsequently in (10), giving the 
same thickness, but with no improvement in xZ(z). This 

Z 2 

1.8 

1.6 

1.4 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

0 

\ 
\ 

\ 

Y 
f 

\ 

\\ 

0 500 I000 1500 2000 25(X) 3(XX) 35(X) 4~)0 

Thickness (~,) 

Fig. 4. Determination o f  thickness, fit between experimental and 
calculated relative intensities in the (h00) row as a function o f  
thickness. 
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Table 4. Integrated intensities in the [001] projection 

n is the number of  reflections, n' = y'~7=l I is the number of  relative intensities. 

Thickness (in A) 
Reflections Effective potentials at minimum X z 

Structure factors 1000 
(h00) systematic row Bethe potentials 1500 
5 reflections Dynamical potentials 1500 

Structure factors 
(hhO) systematic row Bethe potentials - 
7 reflections Non-systematic Bethe - 

Dynamical potentials 
Structure factors 

(h00) + (hhO) Bethe potentials 1700 
12 reflections Dynamical potentials 1400 
200-400-600-800-330 Structure factors 1800 

Bethe potentials 1500 and 2600 
200-400-600-800-330-550 Structure factors 1500 

Bethe potentials 1700 
200-400-600-800-330-550-660 Structure factors 

Bethe potential 

result may be taken as an indication that the thickness is 
large enough for the Bethe approximation (9) to the 
dynamical potentials to be valid. 

Calculations were repeated for the (hhO) row, but no 
clear minimum in X2(z) was seen, either for the structure 
factors or the Bethe potentials. Finally, calculations were 
carried out including all the reflections in the (h00) and 
(hhO) rows, as well as for a subset of strong reflections 
extracted from both rows (see Table 4). The best fit to the 
experimental relative intensities is obtained by including 
only (h00) reflections in the refinement, giving a 
specimen thickness of 1500 A. 

3.3. Correction for two-beam dynamical scattering 
In the previous section, we saw how the crystal 

thickness could be determined from the relative inten- 
sities among a small set of reflections with known 
structure factors. In a similar way, still using the two- 
beam approximation [equation (8)], we can calculate the 
amplitude of the effective (dynamical) potentials, Ug, for 
the rest of the reflections in the projection, with the 
scaling of the effective potentials provided by the 
thickness and at least one (effective) structure factor for 
a strong reflection. 

In the effective two-beam approximation, where the 
effect of other beams is included through a dynamical 
potential substituted for the structure factor in the two- 
beam expression, relative intensities are proportional to 
ratios between integrals of the Bessel function. The 
effective potential Ug ff is given by 

Ag 

Ag f Jo., 
o 

dx ~ (I_~h ) [R2 - (g/2)2]l/2 
[R 2 - (h/2)2] 1/2 

Ah 

x A h f Jo<x, & 
o 

(13) 

x2/n x2/n ' 
0.35 0.175 
0.04 0.02 
0.1 0.05 

>0.8 >0.4 
>1 >0.5 

>1.5 
1.25 
1.5 
0.022 0.01 i 
0.82 0.41 
0.028 0.011 
0.05 0.02 

>0.3 
>0.1 

with Ag = 2zUgff /k,  A h = 2zU~,ff /k,  Ig and I h experi- 
mental intensities, and the square root terms are derived 
from the Lorentz correction (see §3.1). Reflection h 
provides the scaling of the intensities; in our case, 600, 
the strongest reflection in the (h00) row, was used. 

The integral of the Bessel function in (8) and (13) 
exhibits damped oscillations with thickness, periodic 
with the extinction distance. For the strong reflections, 
e.g. 330 and 600, the extinction distances are of the order 
of a few hundred A, considerably less than the actual 
thickness (1500 A) at which the precession data were 
acquired. Experimental intensities, however, represent an 
average over thicknesses and diffraction conditions 
within the 0.5-1 l.tm area of the sample illuminated 
during precession. Thickness variations within the 
illuminated area comparable to the extinction distance 
for the strong reflections can thus be expected. This will 
reduce the oscillations significantly. 

Integrated intensity averaged over the crystal thickness 
is reproduced in Fig. 5 for a few reflections in the (h00) 
and (hhO) rows. For reasonable thicknesses, oscillations 
are small and the error introduced by approximating the 
integrated Bessel function in (13) by a single-valued 
function with the same main characteristics is small 
compared with the uncertainties in the experimental data. 
An approximation, [(sin ax)/ax] 2, was therefore substi- 
tuted for the Bessel function in (13) in order to get a 
single-valued expression for Ig(Ugz). The period, a, was 
chosen for the first minimum to coincide with the first 
minimum of the Bessel function and an exponential 
damping, b, to get the correct asymptotic behaviour at 
large thicknesses, giving 

[(sin ax)/ax] 2 exp[-(x/b)] 2 (14) 

with a = rr/2.405 and b -- 2.565. A comparison between 
(14) and the Bessel function is shown in Fig. 6. 
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Expression (14) was substituted for Jo(x) in the further 
calculation. Effective potentials were then calculated by 
solving (13) numerically for Ag in the interval 
0 < Ag <A60 o, using the bisection method (Press, 
Flannery, Teukolsky & Vetterling, 1988). For (h00) 
reflections, calculated effective potentials were within 
10-20% of  both the structure factors and the Bethe 
potentials. In the (hhO) row, the agreement is poorer, as 
expected, especially for 220, 330 and 660. 220 and 660 
are weak and strongly coupled to strong reflections in 
both the (h00) and (hhO) rows. The sensitivity to the 
structure factor, or rather Ugz, is much smaller for large 
thicknesses and strong reflections (see Fig. 5) and this 
may explain the poor accuracy in the strong 330 
reflection, which is also strongly coupled to other 
reflections, in particular the strong 530 and 860 
reflections. The effective potentials and corresponding 
' two-beam corrected'  intensities, I ugrfl2, scaled to the 
experimental intensities (Table 3) are listed in Table 5. 
These represent an improvement of  the intensity set, but 
further corrections are needed to remove contributions to 
the effective potentials from n-beam dynamical  scatter- 
ing. This is the subject of  the following sections. 

3.4. Assigning signs to the effective potentials 

The effective structure factors determined in the 
previous section include contributions from many-beam 
dynamical scattering. The next step, to determine 
structure factors (amplitudes and signs) from the effective 
potentials, can only be performed once the signs of  
effective potentials are known. In this section, we will 
show how signs can be assigned to the effective 
potentials, using phase statistics based on triplets. 

In a known crystal, structure effective (dynamical) 
potentials may be calculated from the structure factors 
using (9) or (l l) and (12). Phase angles or, in the case of  
centrosymmetric crystals, signs can be assigned to the 
effective potentials. These will generally not be the same 
as the signs of  the structure factors but arise through the 
relative signs of  the different many-beam contributions to 
the effective potentials. It is possible that weak reflections 
that are strongly coupled to strong reflections will have 
structure factors and effective potentials of  opposite sign. 

The scaled potential U ( r ) =  Y~g Ug exp(2zrigr), like 
the electron density in X-ray crystallography, is, at least 
as a first-order approximation, composed of  contributions 
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Fig. 5. Integrated intensities in (a) (h00) and (b) (hhO) rows as a function of thickness and the thickness average of the integrated intensity in (c) the 
(h00) row and (d) the (hhO) row. 
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Fig. 6. (a) The Bessei function Jo(x) and the approximation 
(sinax/ax)2exp(-bx2). (b) The two-beam integrated intensity 
compared with the integral over the approximation. (c) The thickness 
average of the integrated intensity calculated using the Bessel 
function and the approximation. 

Table 5. Effective potential amplitudes and quasi- 
kinematic intensities in the [001] projection 

Bethe Quasi-kinemmic 
potential Effective intensities 

hkl d Uff ethe potential IU~t ~ IU~I z 
110 6.25 0.00517 0.0048 35.34 
200 4.42 -0.01456 0.01242 280.30 
220 3.13 0.00308 0.00701 12.54 
310 2.80 0.00697 64.23 
330 2.08 0.03980 2094.42 
400 2.21 0.01066 0.01146 150.25 
420 1.98 0.00218 6.28 
440 1.56 0.00399 0.00383 21.05 
510 1.73 0.00174 4.003 
530 1.52 0.01097 513.13 
550 1.25 0.00891 0.01224 104.97 
600 1.47 0.01729 0.01729 395.27 
620 1.40 0.00127 2.13 
640 1.23 0.00098 1.27 
660 1 . 0 4  -0.00428 0.00700 24.22 
710 1.25 0.00456 27.49 
730 1.16 0.00260 8.94 
750 1.03 0.00097 1.24 
770 0.89 0.00001 0.00142 0.0 
800 1 .11  -0.00616 -0.00779 50.17 
820 1.07 0.00653 56.38 
840 0.99 -0.00042 0.23 
860 0.88 0.00536 37.99 
910 0.98 0.00057 0.43 
930 0.93 0.00280 10.37 
950 0.86 0.00064 0.54 
970 0.78 0.00045 0.27 
10,0,0 0.88 0.00147 0.00146 2.86 
10,2,0 0.87 0.00155 3.18 
10,4,0 0.82 0.00078 0.80 

f rom reso lved  atoms.  W h e n  s t ructure-factor  ampl i tudes  
are known ,  this restricts the relative phases  be tween  
structure factors accord ing  to the Sayre equat ion  (Sayre,  
1952): 

Fg = f2g y~ FhFg_ h (15) 
h 

with  ~ a ca lculable  constant .  W h e n  Fg is large, the sum 
tends to be domina t ed  by products  be tween  large F h and 
Fg_ h. W h e n  all three ref lect ions g, h and g - h  are strong, 
there is a large chance  that Fg and FhFg_ h will  have the 
same sign. The  probabi l i ty  that the sign o f  FgFhFg_ h is 
posi t ive can be ca lcula ted  as (Cochran ,  1955) 

p+  ½ + ½ tanh(0.3 3/2 = / 0 "  2 ) E g E h E g _  h (16) 

wi th  

0., = ~ n~, (17) 
) 

whe re  nj are the no rma l i zed  a tomic  scat tering factors: 

.j = /zi :: 
The appl icat ion o f  the phase  statistics to effect ive 
potent ials  represents  an extent ion,  val id only  under  the 



K. GJONNES, Y. CHENG, B. 

Table 6. Triplets determining phase relations in the (hO0) 
r o w  

gl g2 g3 UI U2 U3 P(+)  

3 3 0 3 - 3  0 6 0 0 27.15 0•9975 
5 5 0 5 - 5  0 10 0 0 4.79 0.7401 
6 0 0 2 0 0 8 0 0 4 •25  0•7200 
6 0 0 4 0 0 10 0 0 2 . 7 6  0.6488 
4 0 0 2 0 0 6 0 0 2 . 1 4  0.6158 
8 0 0 2 0 0 l0 0 0 1.61 0.5888 
l l 0 1 - 1 0 2 0 0 0 •05  0.5026 
5 3 0 5 -3 0 10 0 0 2 . 1 4  0.6169 
3 l 0 3 - 1 0 6 0 0 0 . 4 3  0•5240 
5 1 0 5 -1 0 10 0 0 0.032 0.5017 

The signs in the last column are the signs of the triplets 
for the reflections listed in Tables 2 and 3. 
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reflections starting from each of the four possible 
combinations of signs for 530 and 860 and let the choice 
between them be determined by dynamical calculations 

Sign at a later stage. The signs for the reflections outside the 
+ (h00) and (hhO) rows were then worked out by trial and 
+ 

error from the triplets by starting from the strongest + 
+ triplets and continuing down the list until all the signs in 
- the projection were determined. The stronger reflections 
+ all enter into several triplets, most of  which confirmed the 
+ sign already chosen. 
+ 
+ 

using the signs 

restriction of atomicity which applies to the real 
potential, but not necessarily to the 'pseudopotential' 
whose Fourier coefficients are the effective structure 
factors. However, if  the effective potentials, Ug ff, are 
within the same order of  magnitude as the Fourier 
coefficients, Ug, this is a reasonable assumption. The 
probabilities in (16) refer to (effective) normalized 
structure factors where the dependence on scattering 
angle has been removed: 

~ f f  = ( l /Vc)[Ugff /E£(s)exp(-Bjs2)]  (19 )  
J 

with V C the unit-cell volume, fj the atomic scattering 
factors, Bj the Debye-Waller factors, s -- sin 0/~. - - g / 2  
and the summation is over all atoms in the unit cell. 

All triplets in the [001] projection were generated and 
sorted by the amplitude of the normalized effective 

• eff eff eft potennals, Eg E h E g-h. First, triplets among (h00) and 
(hhO) reflections, a swe l l  as triplets determining any of 
these, were considered (see Table 6). The structure 
factors in the (h00) and (hhO) systematic rows had been 
determined from CBED profiles and the relative signs 
within each row may be assumed to be correct. The 
symmetry of the centrosymmetric projection [001] is 4m 
(Gj_'~nnes et al., 1995), giving equal signs for (hk0) and 
(hk0). By choosing 330 positive, the origin is fixed, since 
330 will then also be positive. 4n,0,0 reflections are 
invariant with respect to change of origin, which leaves 
only the signs for 2n,0,0 to be determined. A check of all 
triplets determining signs in the (h00) systematic row 
(Table 6) shows that all but two of them are consistent 
with the signs listed in Tables 1 and 2. 

We now turn to the determination of signs for 
reflections outside the (h00) and (hhO) rows. The 
intensities of  the two strongest non-systematic reflections 
530 and 860 depend strongly on the relative signs 
involved, i.e. on the sign of the triplet 330, 530 and 860. 
Since both 530 and 860 are strong reflections appearing 
in several of the strongest triplets, they will influence the 
signs for the rest of  the reflections in the projection. It 
was therefore decided to deduce signs for the hk0 

3.5. Corrections for many-beam dynamical scattering - 
determination of structure factors 

We have now reached the final step in the determina- 
tion of the structure factors in the [001] projection, i.e. 
the determination of structure factors from dynamical 
potentials. The effective potentials determined from the 
integrated intensities and the signs determined from 
triplets are now ready to be input into the Bethe 
expression for the dynamical potentials: 

ug~ethe = Ug- ~,(UhUg_h)/2ks h (20) 
h#g 

with the excitation errors 2ks h taken at the Bragg 
condition for g. Equation (20) is a set of coupled non- 
linear equations for the structure factors in terms of the 
dynamical (Bethe) potentials. We will attempt to solve 
these iteratively using the effective potentials, U J  f, as 
zeroth-order approximations to the structure factors. We 
rewrite (20) as 

U (n+l) = U ;  ff + Y~.(U~")U(g')_h)/2ks h (21) 
hCg 

with (n) the nth iteration and Ug (°) = Uj ff. We assume that 
the strong reflections are less affected by other beams and 
start by calculating first-order approximations to these, 
i.e. in our case with 330 the strongest and 600 the next 
strongest reflection: 

U3 1 ) / / . e f t  
30 ~ 'J330 

and 

V~l~ . e f t  U(1) V(1 ) . . . . . .  = "-'60o + 330 3~01(1/2ks330) + (1/2ks3~o)] 

etc., gradually introducing contributions from more 
beams in the calculation• The iterations were repeated 
until 3 = [ ( U ~ -  Ug-')/Ug[ was less than some preset 
limit; in our calculations, we used 3 = 0.02. Only a few 
iterations, 2 or 3, were needed for the strong reflections 
and 5-10 for the weak ones. 

In the procedure described above, we assume that the 
intensity in reflection g near its Bragg condition can be 
described in terms of two beams, which is a reasonable 
approximation for most of  the reflections in the 
precession geometry. The two strong reflections 530 
and 860, however, strongly coupled by the strong 330 
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reflection, enter the Bragg condition simultaneously. A 
three-beam case is formed, whose solution depends 
strongly on the relative signs involved (Fig. 7). It was 
therefore decided to find approximate solutions for 530 
and 860, and then introduce these into the iteration 
scheme for the determination of the rest of the non- 
systematic reflections. The three diffraction conditions 
where 530 and/or 860 enter the Bragg condition are 
sketched in Fig. 7; a three-beam case formed by 330 and 
860 coupled by 530, one with 530 and 3.30 coupled by 
860 and one with 530 and 860 coupled by 330. The 
integrated intensity in 530 and 860 is the sum of the 
intensity contribution from the two relevant three-beam 
cases encountered in each cycle. With the assumption 
that the intensity can be attributed to an effective 
potential, this must then include an average over the 
two, i.e. 

U~fo = U53 o -- U33oU86o[(1/2ks~3o) + (1/2ks~3o) 

+ (1/2ks~6o) + (1/2ks~6o) ] (22) 

J 

000 330 
(a) 

/ 

- Z _ L "  " " " • . • . • . o 

330 000 330 
(b) 

530 

• 

/ ~ 0 0 0  330 Leoe e+e/e 

(c) 
Fig. 7. The diffraction conditions with (530) and/or (860) at the Bragg 

condition. 

Table 7. Structure factors, U53o and U860, calculated from 
Useff r reff U3so and the excitation errors using the Bethe 30' "J 860' 

fi)rmula 

ueff eft 
530 U860 U53o U860 

+ + 0.00192 0.00871 
+ - 0.00580 0.00490 
- + - 0 . 0 0 5 8 0  - 0 . 0 0 4 9 0  
- - - 0 . 0 0 1 9 2  -0 .00871  

and 

u e f f  U860 , i i i  (1/2ks~V o) 860 = - -  U33oU53o[(1/2k$33 O) --b 
4- (1 iii iv 

/ 2 k s 5 3 0 ) ] ,  / 2 k s 5 3 0 )  + ( I  (23) 

where s i and S ii refer to excitation errors at the Bragg 
conditions for 530 and S iii and s iv at the Bragg condition 
for 860. Inserting calculated excitation errors and U330, 
U~ ff and u~6ff 0 into (21) and (22) gives the four possible 
combinations of U530 and U860 listed in Table 7, which 
was introduced into (21) as fixed parameters along with 
the (h00) and (hhO) structure factors. 

The iterative solution of the Bethe equation (21) was 
repeated for each of the four combinations of signs for 
530 and 860, this time with U530 and U860 as well as 
(h00) and (hhO) structure factors kept constant. The result 
is four different possible sets of structure factors, 
differing both in phase and in amplitude. To distinguish 
between these, one would have to rely either on phase 
statistics, especially the probability that the triplet 
U53oU86oU330 > 0 o r  a comparison between n-beam 
dynamical calculations of integrated intensities based 
on the structure factors and experimental intensities 
discussed in the next section. 

3.6. Dynamical n-beam calculations of  precession 
integrated intensities in the [001] projection 

The procedures described in the previous sections have 
lett us with four possible sets of structure factors. The 
choice between these was made on the basis of 
dynamical n-beam calculations. The details of the 
calculations will be described elsewhere (Gjonnes, 
1997b) and only a brief outline is given here. Beams 
out to 1.0 A (only ZOLZ) were included. For each 
reflection, the position of the Laue circle at the Bragg 
condition was calculated. The intensity near the Bragg 
condition was calculated (i.e. as a function of 0 in Fig. 2) 
and integrated. At each 0, the n strongest beams, in terms 
of Ug/2ksg, were included in a standard n-beam 
dynamical Bloch-wave calculation. A number of test 
calculations showed that 20 beams was sufficient but 
these change as the beam is precessed and a different 
selection of beams was used for each 0. Test runs also 
showed that it was sufficent to calculate for an angular 
range of 0.5 ~ near each Bragg condition. 

Calculated integrated intensities for the four sets of 
structure factors, as well as kinematical intensities, are 
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reproduced in Fig. 8, for comparison with experimental 
intensities, as well as calculated kinematic intensities 
(Fig. 9) for each of  the four structure-factor sets. The 
difference between kinematic and dynamical intensities is 
evident, suggesting considerable dynamical scattering. 
Kinematic intensities are dominated completely by the 
strong 330 and differences between the four different 
structure-factor sets are difficult to see in Fig. 9. 
Differences between the four sets of  calculated (dynami- 
cal) integrated intensities are easily spotted (Fig. 8), 
especially in the relative intensities in 200 and 330. More 
quantitative measures of  the best fit to experimental 
intensities are the R factor 

R = ~ [ i g X p  _ ig(z)calcl/y~ -gleXp (24) 
g g / 

and the correlation constant 

- - / 

× [~g[Ig(z)Ca'c]e--[~g [g(z)calc]2/N}'/2) -1, 

(25) 
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Fig. 9. Kinematical intensities calculated with: U~ ff > 0 and U~6f~ > 0; 
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Fig. 10. Calculated integrated intensities (n-beam dynamical) at 1000 A, 
1500 A and 2000 A for rrat eft "530 < 0 and U860 > 0. 
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Table 8. R factors (R) and correlation constants (CC) between calculated intensities (n-beam dynamical) and 
experimental intensities for the four structure-factor sets 

Thickness (A) 

1000 
1500 
2000 

(1) (2) (3) (4) 

U~3 ff > 0 //eft  '-'860 > 0 U~3ffo > 0 U~6 ff < 0 U~3ffo < 0 ' le f t  eft eft ~ 8 6 o > 0  U53 o < 0  U{60 < 0  
R CC R CC R CC R CC 

0.59 0.74 0.56 0.76 0.53 0.76 0.64 0.68 
0.44 0.85 0.42 0.87 0.38 0.88 0.59 0.80 
0.62 0.65 0.67 0.61 0.65 0.63 0.51 0.81 

where the the experimental and calculated intensities, igXp 
and Ig(z) caic, are scaled to ~ igXp = y~ ig(z)C~lc. R factors 
and correlation coeffecients for the intensities were 
calculated for a range of thicknesses for all four 
structure-factor sets (Table 8). The smallest R factor 
(38%) and the best correlation constant (88%) were 
found at a thickness of 1500 A (Fig. 10) for both U530 
and U860 negative but with U~ ff positive. R factors 
calculated for the square root of the intensities, compar- 
able to conventional X-ray R factors, go down to 32% 
with a correlation constant of 93%. The structure factors 
are listed in Table 9. 

4. Discussion and conclusions 

In the previous sections, we have obtained (hk0) structure 
factors in AlmFe by combining data from two different 
experimental techniques: energy-filtered CBED profiles 
from the (h00) and (hhO) systematic rows and integrated 
intensity collected by the precession technique in the 
[001] projection. The ab initio determination of the (h00) 
and (hhO) structure factors was based on accurate 
intensity measurements and n-beam dynamical scattering 
calculations for the systematic row but non-systematics 
and absorption were ignored. The uncertainty in these 
structure factors ranges from 1% for the strongest to 20% 
for the weakest ones. The remaining (hk0) structure 
factors were determined from integrated intensities of 
much poorer accuracy, by means of two-beam-like 
intensity expressions; the effect of other beams was 
accounted for by a dynamical potential substituted for the 
structure factor in the two-beam expressions. The 
uncertainty of the remaining (hk0) structure factors 
depends on the knowledge of thickness and scaling 
provided by the absolute structure factors from the 
CBED work. An estimate is provided by the (h00) and 
(hhO) structure factors, which can be reproduced by the 
procedures decribed in §3 (when 600 is used for the 
scaling) to within 10-20%. 

Determination of unknown structures in general 
requires three-dimensional intensity data, preferably a 
full set of integrated intensities reaching as far out in 
reciprocal space as possible, preferably to 1.0 g,. This can 
be obtained with the precession technique (Vincent & 
Midgley, 1994) by systematically tilting through recipro- 
cal space (Gjonnes et al., 1998). The tilted beam in the 

Table 9. Structure factors in the [001] projection 

Structure ~c to rUg 
h k l in A -2 

1 1 0 0.00290 
2 0 0 -0.01191 
2 2 0 -0 .00199 
3 1 0 0.00662 
3 3 0 0.03872 
4 0 0 0.01592 
4 2 0 0.00132 
4 4 0 0.00750 
5 1 0 -0 .00323 
5 3 0 -0 .00580 
5 5 0 0.00773 
6 0 0 0.01275 
6 2 0 -0 .00149 
6 4 0 -0.00351 
6 6 0 0.00226 
7 1 0 0.00209 
7 3 0 0.00209 
7 5 0 -0 .00060 
7 7 0 0.00158 
8 0 0 -0 .00653 
8 2 0 0.00518 
8 4 0 -0 .00310 
8 6 0 -0 .00490 
9 1 0 -0 .00188 
9 3 0 0.00297 
9 5 0 0.00331 
9 7 0 -0 .00192 

10 0 0 0.00356 
10 2 0 -0 .00147 
10 4 0 0.00038 

precession technique gives important advantages com- 
pared with traditional spot patterns. Very high index 
reflections can be excited and several Laue zones can be 
measured. More important, dynamical scattering is 
significantly reduced. However, as shown by calculations 
presented here, the remaining dynamical scattering may 
be considerable. There is thus a need to develop methods 
for treating integrated intensities by an approximate and 
workable approach in unknown structures. The present 
method is based on projections, since the main dynamical 
scattering interactions occur within the projection and 
because it will be important to correct the intensities for 
dynamical scattering prior to merging of the projections 
to form a three-dimensional set. Experimentally, projec- 
tions will refer to different thicknesses, as well as differ 
widely in the n-beam coupling and dynamical effects. 
Relative intensities within systematic rows may vary 
from projection to projection and attempts to merge 
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uncorrected intensity data from several projections will 
invariably give inaccurate results. 

A quasi-two-beam approach to dynamical scattering is 
used in the present treatment. Thickness and effective 
(dynamical) potentials Ug ff can be determined in two 
steps, provided a few structure factors in the projection 
have been determined by other methods, e.g. from CBED 
intensity profiles. In our example, structure factors in 
both the (h00) and the (hhO) rows had been determined 
from CBED patterns. The relative intensities in the (h00) 
row were found to be dominated by two-beam-like 
scattering within the systematic row and well suited as a 
reference in the thickness determination. The scaling of 
the effective structure factors was provided by 600, the 
strongest reflection in the (h00) row. The effective 
structure factors may in many cases represent a 
substantial improvement of the experimental data, 
especially for large thicknesses or strong reflections. At 
this stage in the correction procedures, we have still not 
made use of any phase information and the method 

should work equally well in non-centrosymmetric 
projections. 

The next step, extraction of structure factors from 
[Ugff[, depends upon signs. Relative signs within the 
(h00) and (hhO) rows have been determined separately by 
CBED. The remaining signs in the centrosymmetric 
AlmFe [001] projection were found using statistical 
methods based on positive triplets. Triplets within the 
two systematic rows did to a large extent confirm the 
signs already determined from CBED patterns and it may 
be possible to determine all the signs in a projection from 
statistical methods alone, either in the simple form used 
here or by more advanced statistical methods. Determi- 
nation of phases in the non-centrosymmetric case will 
certainly be more difficult and will require a more 
sophisticated statistical treatment of the quasi-kinematic 
intensities proportional to lUg ffl2. 

The phase determination described above has been 
based on a set of  effective structure-factor amplitudes, 
which may differ in sign as well as amplitude from the 

u eff 
530 > 0 

ueff 530 < 0 

uef f  > 0  
860 

uef f  < 0  
860 

o 

Fig. 11 Potential maps calculated with: i1~fr lien e~ e~ " rraf ~fr rl~fr "530 > 0 and > 0; U~30 > 0 and U860 < 0; U~3no < 0 and ~s60 > 0; U530 < 0 and "860 < 0, • ~ 8 6 0  

respectively. 
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Table 10. Peaks in the potential maps U(x, y) = Y~h.k Uo exp[(2rc(hx + ky)] calculated from the four structure-factor 
sets 

(1) (2) (3) (4) 
u~;0 > 0 tq~  > 0 u~"0 > 0 t q 8  c 0  t J ~  < 0 tq~ff0 > 0 tq~  < 0 tq~  c 0  

X V X V X V X Y 

0.1875 0.1875 0.1818 0.1818 0.1875 0.1875 0.1818 0.1818 
0.3125 0.3125 0.3182 0.3182 0.3125 0.3125 0.3182 0.3182 
0.1960 0.5 0.2040 0.5 0.1935 0.5 0.2016 0.5 
0.3040 0.0 0.2960 0.0 0.3065 0.0 0.2984 0.0 

structure factors. Still, the signs of  the structure factor 
and effective potentials turned out to be the same for 
most of  the reflections. In the strong 530 reflection, 
however, the intensity is dominated by three-beam effects 
including the strong 860 coupled via 330, resulting in 
opposite signs for the structure factor U530 and the 
effective (or Bethe) potential u~3fr o. The three-beam case 
530, 860 and 330 was therefore treated separately and we 
were left with four possible solutions, differing mainly in 
the signs of  the two strong reflections 530 and 860, as 
well as minor differences in weak reflections coupled to 
these. To choose between the four solutions, n-beam 
dynamical calculations of  (hk0) integrated intensities 
were needed. The best fit, with an R factor of  38 and 88% 
correlation, was obtained with /553 o = - 0 . 0 0 5 8 0  and 
U860 = - 0 . 0 0 4 9 0  A -2, corresponding to an R factor of  

32% in structure amplitudes. This gives a combined 
measure of  the accuracy in the intensity measurements 
and the two-beam approximation used in the present 
treatment. Unfiltered experimental intensities represent 
an average over thickness and diffraction conditions. 
Very high index reflections (further out than 1.0 A) were 
not included as the measured intensities in these are more 
uncertain. They do, however, contribute to the dynamical 
scattering in the projection and this may explain why it is 
difficult to bring the R factor below 30%. 

In real space, the difference between the four different 
solutions is demonstrated in the potential maps repro- 
duced in Fig. 11. The two maps for U~3rr 0 > 0 have similar 
features, a strong peak in the centre, strong peaks on the 
diagonal at approximately (0.18, 0.18) and (0.32, 0.32) 
as well as an irregular peak at approximately (0.5, 0.20). 

(a) (b) 

(d) (e) 

(c) 

(f) 
Fig. 12. Potential maps (positive and negative parts) calculated from I~/2 (a and d), Uh0 o, Uhh o and I~/2 for the rest of the reflections (b and e), Ug 

(c and f).  Signs in (a), (b), (d) and (e) are taken from Tables 2 and 3 for h00 and hhO reflections and from the structure model (Table 11 ) for the 
rest of the hkO reflections. 
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The maps calculated with Heft "530 < 0 show quite different 
features, the peak at (0.5, 0.20) now has a much more 
regular (and reasonable) shape and the peaks on the 
diagonal at (0.19,0.19) and (0.31,0.31) are better 
separated (see list of peak positions in Table 10). 

The effect of dynamical scattering in the precession 
patterns is evident and even more so in traditional spot 
patterns. Still, several structures have been solved from a 
combination of electron diffraction intensities and phase 
information in high-resolution images (Zou et al., 1996; 
Weirich et al., 1996; Tang, Jansen, Zandbergen & 
Schenk, 1995) using a kinematic approximation, though 
usually at smaller thicknesses. This owes more to the 
robustness of the various crystallographic methods 
employed, Patterson, Fourier and direct methods, than 
to the accuracy of the data in terms of lg (x lUg[ 2. A 
kinematic interpretation of the experimental intensities 
combined with chemical knowledge will in many cases 
give the main features of the structure, approximate 
atomic positions and coordination for the majority of the 
atoms. 

One example is the parallell effort to determine the 
structure of AlmFe from a three-dimensional set of 
integrated intensities extracted from electron diffraction 
precession patterns (Gjonnes et al., 1998). A structure 
model (see Table 11 for a list of preliminary x and y 

(a) 

Table I1. Preliminary x and y coordinates in AlmFe 

Atom 

1 Fe 
2 Fe/AI 
3 Fe/AI 
4 AI 
5 AI 
6 AI 
7 AI 
8 AI 
9 AI 

10 AI 
11 AI 
12 AI 
13 AI 

(Gjonnes et al., 1998) 

Occupancy 

1.0 
O.75/0.25 
0.75/O.25 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

Wyckoff 
position x v 

8(i) 0.180 0.180 
8(0 0.181 0.181 
8(i) O. 183 O. 183 

16(j) 0.325 0.033 
16(j) 0.319 0.045 
16(j) 0.321 0.041 
4(e) 0.000 0.000 
4(e) 0.000 0.000 
4(e) 0.000 0.000 
2(b) 0.000 0.000 
8(i) 0.25 0.25 
8(0 0.25 0.25 
8(g) 0.5 0.180 

coordinates) has been derived using a variety of methods, 
including Patterson and Fourier syntheses as well as 
maximum-entropy methods, all based on the kinematical 
approximation. R factors of 40-50% between (l~Xp)l/2 
and lug°dell were obtained, corresponding to R factors of 
70% or more for the intensities, which is probably the 
best achievable without considering dynamical scattering 
for crystals as thick as these (1000 to 1500A). 
Comparison between dynamical intensities calculated 

q 

(aO 

(b) 

(e) 

(c) 

(f) 
Fig. 13. Potential maps calculated from the model (Gjonnes et al. 1998, Table 11), with all atoms included (a) and only the atoms 1-10 included (d) 

and the difference map (b and c are positive and negative areas, respectively) between the Ug's (this paper) and the model (a) and the difference 
map (e and f )  between U~'s and atoms 1-10 (at). 
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from the structure model and experimental intensities 
give R factors as high as 80% depending on the 
thickness, compared with 38% for the best set of 
structure factors determined in this paper. The correction 
procedures described here thus result in a substantial 
improvement of the data set. 

What is the significance of this in crystal structure 
determination? Measured intensities may be distorted by 
strong dynamical scattering. In a purely kinematic 
interpretation, this may lead to erroneous results in terms 
of potential maps or atomic coordinates. To better 
understand the effect of including dynamical scattering 
in the interpretation of the integrated intensities, potential 
maps Ugexp(2zrigr) in the [001] projection were 
calculated from the structure factors, Ug, determined 
here and compared with calculations based on llg/2, as 
well as a combination of Ug for (h00) and (hhO) 
determined from CBED and ~g~/2 for the rest of the 
reflections (Fig. 12). In the latter two, signs were taken 
from the CBED work (Tables 1 and 2) for the two 
systematic rows and from the model suggested by 
Gjonnes et al. (1998) for the rest of the reflections. The 
effect of removing dynamical scattering from the (h00) 
and (hhO) systematic rows is to remove subsidary off- 
diagonal peaks and emphasize the peak at (0.2, 0.5) 
(compare Figs. 12a and b). A further improvement is 
seen when all the reflections are corrected for dynamical 
scattering resulting in strong well separated peaks of 
regular shape (Fig. 12c), slightly shifted relative to Figs. 
12(a) and (b). The enhancement of peaks as more 
dynamical effects are included encourages further 
discussion of the structure model. 

Potential maps for the [001] projection were then 
calculated (Fig. 13a) for the structure model derived by 
Gjonnes et al. (1998), where most of the preliminary x 
and y coordinates (Table 11) were considered to be 
reasonably accurate. A few coordinates, however, are 
more uncertain, notably atoms 11, 12 and 13 (Table 1 I), 
which were chosen by Gjonnes et al. (1998) to give 
reasonable atomic distances and coordination but not 
consistently confirmed by peaks in Fourier and direct 
methods. To see if indications of atoms 11-13 (Table 11) 
could be found in the corrected (hk0) structure factors 
(this paper), a potential map was calculated using only 
atoms 1-10 (Fig. 13d). Difference maps were calculated 
between the corrected potential map (Fig. 12c) and the 
model including atoms 1-13 and atoms 1-10 (Figs. 13b,c 
and 13e,f). The strong positive peak at (0.5, 0.24) in Fig. 
13(e) suggests that the atom at (0.5, 0.18) in the model 
should be moved by approximately 0.5 A. The position 
of the peaks on the diagonal is slightly shifted in Fig. 
l l(c) relative to the model, in the difference Fourier a 
positive peak appears adjacent to a negative peak of 
roughly the same amplitude near the (0.18, 0.18) peak in 
Figs. 13(a) and (d), possibly indicating a small displace- 
ment of some of the atoms relative to the model. With 
only two-dimensional intensity data, we have no 

information on the z coordinates and it is therefore not 
possible to know which of the atoms in the model are 
misplaced. While the atomic arrangement of the structure 
model must be considered roughly correct, some minor 
adjustments of x and y coordinates are suggested by the 
structure factors determined in §3 (see Table 11). This 
encourages a further refinement of the structure from 
three-dimensional intensity data along the lines sug- 
gested here. This, however, is outside the scope of this 
paper, but see Gjonnes et al. (1998) for further details on 
the structure determination. 

The sucessful determination of unknown structures in 
electron diffraction will depend on many well defined 
intensities. Intensities extracted from spot patterns (SAD 
or microdiffraction) are useful at small thicknesses where 
they sometimes can be treated kinematically. At larger 
thicknesses, where dynamical effects are more serious, a 
combination of data from different diffraction techniques 
may be a better approach. In the AlmFe example 
presented here, absolute structure factors determined 
from CBED intensity profiles and integrated intensities 
acquired with the precession technique were combined to 
determine structure factors in a projection. The difficulty 
lies in the interpretation of the precession data, and the 
realization that these are dynamical intensities, though 
less so than in many other techniques. Still the intensities 
must be corrected to some degree for dynamical 
scattering if all the structure information is to be 
revealed. The approach presented here provides a first- 
order approximation in terms of an effective two-beam 
description, sufficient to bring out new structural 
information compared with a mere kinematical inter- 
pretation of the intensities. 
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